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Comparison of Complex Potentials: Absorption Width and Robustness
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Virtues and weaknesses of several complex absorbing potentials are examined. In particular, we study the
absorption width and robustness of different optimized absorbing potentials for two types of boundary
conditions. It is found that “composite potentials” formed by addition of square barrier units provide a flexible,
robust, and efficient approach to absorb in the low momentum region, where other potentials are useless.

1. Introduction complex transmission and reflection amplitudes for left inci-
dence.) The absorption for a wave packet can be obtained by
averaging 1— k) with the initial momentum distribution.
However, these theoretical absorption values may be difficult
to achieve in an actual calculation because, due to the space
|discretization imposed by grid methods, the potential is only
sampled at a limited set of points. If the potential oscillates
wildly, a large number of grid points may be necessary to

Absorbing complex potentials are an important tool in
different numerical methods used to study quantum reactive
collisions (stationary and time-dependent) and cumulative
reaction probabilitied;® see additional references in a recent
review® Several works have been devoted to analysis of general
properties of complex potentials as well as the behavior of

specific functional form$:" "2 This paper complements these reproduce in the numerical calculation its ideal absorption curve
work mparing, for two differen f ndar o ) o ST . )
orks by comparing, for two different types of boundary A potential is defined to be “robust” if it maintains its theoretical

nditions, the r tn nd the effectiv rption ran . . . .
conditions, the robustness and the effective absorption ra geabsorptlon when discretized. In general, tobustnesswill

of some of these functional forms: monomial potentials, the vary with incident momentum. A robustness parameter wil
family of potentials proposed by Brouard, Mas) and Muga be defined later to quantify this concept.

in refs 9 and 10 and their generalizations, and composite The ideal “all-our » absorbin tential for an arbitrar
potentials formed by addition of square barriers. The numerical 1€ 1deal “all-purpose absorbing potential for an arbitrary
application would absorb fully all incident momenta

examples provided should also clarify some common miscon-
ceptions about complex absorbing potentials. Sk =0 (allk > 0) (3)
Throughout the paper we shall limit the discussion to one

dimension (it may be, for example, one of the scaled Jacobi and be as robust as possible. These ideal properties are not
coordinates in a collinear atondiatom collision). To analyze  satisfied entirely by any known potential, and it is important to
and compare the performance of absorbing potentiafdinite keep searching for better functional forms in order to study
support [0,L], it is helpful to use dimensionless quantities. accurately, with a minimum of grid points, reactive problems
Dividing the stationary Sclidbinger equation for a state of where broad momentum intervals are represented. Theklow

energyE = p4(2m), region is very important in practice because the potential should
occupy a small (dimensional) interval [Q] to minimize the
I . computational effort. But the dimensionless varidbtiepends
HY)W) = = En&lp(y) ¥y =E¥YY) 1) linearly onL and on the dimensional momentynso that this

objective can only be fulfilled with good absorbers at low values
by AL=2, whered = #%2mL2, and using the dimensionless Of k. ) ) . . )
potential and total energids= v/1 andE = E/A, respectively, In section 2 the different potentials are described, and their
all potentials have support [0, 1] in the dimensionless coordinate Performance is compared in section 3. The paper ends with
x=yl/L. The dimensionless Schtfinger equation takes the form  the main conclusions drawn from the numerical results.

Ra 2. Potentials

dXZw(X) VYR = kzw(x) @ Since the complex potentials are used in many different
applications that use several numerical techniques, it is useful
wherey(x) = LY2¥(y), andk = EY2= pL/# is a dimensionless ~ to distinguish and study two types of potentials. (a) Type |
wavenumber (we shall also frequently refeiktas a “momen- ~ potentials include an infinite barrier:
tum”). The performance of a complex potential as an absorber

for incidence from the left is defined by itsonabsorptioror 0 _if x=<0
survival probability, the sum of transmission and reflection Vi) ={W() ifo<x=<1 (4)
probabilities, SK) = |T'(K)|2 + |R(K)|2 (T' and R are the 00 if1 <x

» Corresponding author. E-mail IMUGA@ULL.ES. Fax 34-22-603684. Because of the infinite wall there is no transmission in this case.

tItis a pleasure to dedicate this article to Raphy Levine on the occasion 1YP€ | potentials are naturally adapted to Dirichlet homogeneous
of his 60th birthday. boundary conditions (vanishing wave function at the edges of

10.1021/jp981943+ CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/17/1998



Comparison of Complex Potentials

the “box”). (b) Type P potentials do not have an infinite wall,
so they are instead suitable for periodic boundary conditions:

0 ifx<0
Ve(¥) ={ Ws(¥x) if0<x=<1 (5)
0 if1<x

Note that the same functio(x) may lead to different values
of the survival§(k) for types | and P.

The traditional approach is to use a purely imaginary
functional form with parameters that can be varied to obtain
maximum absorption at or around a selected v&ieMany
of the potential forms proposed have the factorized form

WX, ko) = —in (ko) F(x) (6)

so that for a fixedF(x) function, (ko) is chosen to minimize
Sko). In order to optimize the potentials at eveky, the
Schralinger equation is solved numerically to determine the
complex transmission and reflection amplituda¥k,) and
R(ko). In this work a quasi-Newtonian method has been used
to find the best value ofy(ko).

2.1. Powers ofx. The most common particular case of eq
6 is the monomial form:

WI(x; ko) = —in(ko)X"

In particular we shall limit our study ta = 1 andn = 2 and
consider purely real or complex prefactorgg or #.c for the
linear case, angqr Or 1oc for the quadratic case),

(7

WLR(X; ko) = =i (ko)X (8)
WL ko) = =i c(ko)x ©)
Wor(X; ko) = ~inqrlko’ (10)
WoclX; ko) = —ingc(ko)’ (11)

When necessary, an additional subscript | or P will specify the

J. Phys. Chem. A, Vol. 102, No. 47, 1998465

The simplest functional form of the wave function is a
polynomial:

J
P = ak)¥ (12)
]; 3i(ko

where the complex coefficientg are obtained by imposing

+ 1 conditions at the boundarigs= 0 andx = 1. In particular,
by choosingR(kg) = 0 (no reflection forkg), and putting an
infinite wall atx = 1 to completely avoid transmission, the three
conditions § = 2) read

Yyx=0)=1
d PR
&UJ(X—O)—'ko

y(x=1)=0 (13)

Substituting eq 12 into eq 13 leads to a system of equations
that can be solved for the coefficiersis The potential is then
obtained by solving folMx) in the Schrdinger equation:

v _
P(X)
ko?+2x—1)" (x +

Wt () = ko7 +

1 \t
1+ik0) (14)

The main virtue of this method is that it provides an explicit
potential that guarantees full absorption for any selected
momentum (also for an arbitrary lengthwhen dimensional
guantities are used), and this may be sufficient for some
applications. This zeroth-order potential also makes clear that
the complex potentials can improve their absorption by adding
a real part, that discontinuities do not preclude full absorption,
and that (when dimensional units are used) the absorption can
be achieved in an arbitrarily short interval(contrast this to
the semiclassical, but generally invalid, notion that several
wavelengths are required).

Higher order members of this family of potentials can be
constructed by imposing that successive derivative&! ()

potential type (otherwise it may be understood that the two types become zero &t = ko. For type | potentials, i’ derivatives

are being considered). Even thoughr andV r are particular
cases ofVoc and Vic, we have optimized the two forms

are made zero, thed = 2 + v. Except forv = 0, the
coefficientsa; have to be obtained numerically and, in practice,

separately in the numerical comparisons, since in most of the going beyondv = 2 is cumbersome.

applications, only; real has been used.

The same method can be adapted to type P potentials. Now

Riss and Meyer have extensively studied the properties of R(ko)) = T'(ko) = 0, and the continuity of the wave function

type P potentials with the general form eq 7 but for real
prefactorsy. They found that higher powers ¢ 2) improve

the performance of linear or quadratic potentials only for large
ko, but the differences are not significant. (The error made by

discretizing the potentials is generally larger than the change

in absorption due to increasing) We have found the same
behavior for complex;, and also for type | potentials (with
real or complexy), so that the linear and/or quadratic potentials
may be taken as representative cases.
behavior will be discussed in section 3.1.
2.2. Generalizations of the Construction Method of
Brouard, Macias, and Muga. A different strategy was

derivative atx = 1 imposes the additional condition

d e 1)—
Hlx=1=0 (15)

In this manner the explicit form of a zeroth-order type P potential
absorbing completely d% is
(x +

e

Their low-energy Bum p(X) =

3+ 2ik,
32+ iky)

1 7lx—1*2 16
2+ ik, ( ) (16)

ko + 6 [x—

proposed in refs 9 and 10, based on a simple inversion methodTo extend the effective absorption width, successive derivatives

that assumes first a functional forof the wae functionin the
potential region. In this manner a family of potentiazlg),lM

of T andR at k = kg are made zero, so for each additional
order two more coefficients are needed (for type P potenlials

can be generated to systematically increase the absorption= 3 + 2v).

widths. The basic ideas are first outlined, and then several

generalizations are provided.

The method can be also generalized to absorb at an arbitrary
number ofk points by using the interferences between contigu-
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Figure 1. Survival for optimized potentialsyko), versusky. Dashed

lines (and open symbols) correspond to type P potentials, whereas solid

lines (and solid symbols) correspond to type | potentials in all figures.
SquaresVor; circles,Voc; triangles right Vi r. For all other potentials
discussed in the tex§ko) is indistinguishable with the real axis in the
scale of the figure.
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Figure 2. Two arbitrary contiguous potential unit§ andV, and the
composite barrielV; + V,, with the corresponding reflection and
transmission amplitudes for left incidence.

ous potential unit$3 Assume first that two complex potential
unitsV; andV, have contiguous and finite supports, as depicted
in Figure 2. LetT" andR"! be the complex transmission and
reflection amplitudes for rightr] and left () incidence of the
compound potentiaV/ = V; + V,, andT" andR", i = 1, 2,

the partial amplitudes of the potential units. From the depen-
dence of T andR"! on the partial amplitudes it is possible to
establish the following conditions so that the compound potential
absorbs two different momenkaandk, (herek = dip/h where

d, is the dimensional width of the first barrietd:

T)(k) = R/(k) =0 (17)
T,)(k) =0 (18)
|
R, (k) = Rillo (19)

R()R, (k) — T (k)T (k)

Note thatV; absorbski, and so doe¥, butV> does not absorb

at ko. Instead, an interference effect is responsible for the
absorption ofk; by V. To fulfill these equations/; can be
constructed with eq 16, whilé, may be obtained by imposing

egs 18 and 19 on an assumed form of the wave function. This
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Figure 3. Real and imaginary parts of a particular composite barrier
potentialVsg, N = 5. The parameters are given in Table 1.

leads to four conditions that can be satisfied, for example, by a
cubic polynomial. The addition of new unit¥/4, V4, ...) can

be continued in the same fashion to absorbprinciple an
arbitrary number of values & (for each new unit conditions
similar to eqs 18 and 19 are imposed). Unfortunately, we have
not been able to exploit this method efficiently in practice,
because small numerical errors in the calculation of the partial
reflection and transmission amplitudes for the wjitend to
blow up when the reflection amplitude fof, is calculated

by means of eq 19, iffj(ki+1) is very small. Thus, unless a
way is found to circumvent this problem (possibly by using
other functional forms for the wave function and potential units),
their applicability as a computational tool is limited. However,
in the next subsection a numerically robust alternative also
making use of the interferences of composite barriers, but in a
less explicit and more effective way, is provided.

2.3. Composite Potentials Formed by Adding Square
Barrier Units. In general, the absorption in a given interval
[ki, ko] will improve by increasing the number of optimization
parameters of the functional form of the complex potential.
However, for arbitrary functional forms the numerical optimiza-
tion can be a lengthy process that requires solving the"Schro
dinger equation many times, so that the number of free
parameters is usually limited to one or two. A more flexible
way out is provided by using a composite potentigd formed
by adding a series of contiguodscomplex square barriers of
lengthe = 1/N and complex energigsVj},j =1, 2, ...,N. An
example is provided in Figure 3. The solution of the Sdhro
inger equation in this case involves simply the multiplication
of 2 x 2 transfer matrice¥} a very fast procedure that allows
optimization of many more parameters (two for each barrier)
than for any other functional form. To implement the method
let us first define the auxiliary matriki(k, x) by4

ikx

d —ikx

M, = M ,=e

_ke*ikX
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and the matrixK(k;, €) for the jth barrier as

ke ke ke ke
e’ +e e’ +e
K= 2 12— 2k‘- (20)
k(—€5 +e7%) & ek
Ko1= - 2 22— - 2 (21)

wherekj = (V; — E)Y2 The transfer matrixW relates the
coefficientsA ; andB; that multiply & and e on both sides
of the barrier (“left” and “right”):

) le)

(22)

W takes the form
N
W= Mfl(k, x=10) [|_| K(k‘-, ] Mk, x=1) (23)
=

and the reflection and transmission amplitudes for left incidence
are given by

R(K) =

W.
21 (24)
1,

o T(K :i
W 1 ( ) Wl,l
so the survivag(k) or its gradient with respect to variations of
the parametery; are easily evaluated. The optimization of the
potential barriers may be carried out by minimizing with respect
to theV; the sum of the survival probabilities atvalues ofk
evenly spaced in the absorption intervil ki:

F(Vy, ooy Vi Ky o k) = Z\S(Vl, Vg k) (25)

By increasing the number of barriel§ the flexibility of the
potential function increases, and the value of the minimized
decreases. In applicatiohkis chosen according to the density
of grid points of the spatial discretization (so that an integer

number of grid points corresponds to each barrier, this aspect

will be discussed further in the next section). By increasing

the survival curves tend to become flat and close to zero in the

full absorption intervallf;, ki. An application of this approach
to the collinear reactioll + H,!® shows how the spatial region
devoted to absorption is significantly reduced with respect to
other potentials, allowing numerical access to low-energy
scattering.

3. Comparison

Here a numerical comparison of the performance of the
potentials described in the previous section is provided. The
three aspects studied are (1) optimized survival at fike@2)

. Phys. Chem. A, Vol. 102, No. 47, 1998467

Figure 4. Absorption widthA(ko; 0.001) versu%,. DiamondsVsg (5
square barriers); triangles UV(E,Z,?AM; squaresyVog; circles, Vac.

circles, Voc (quadratic with compley); diamondsVsg (com-
posite square barriers); triangles rigiitr (linear with realy).

3.1. Minimized Survival. We shall first compare the
survival Sko) for potentials optimized at every value; see
Figure 1. (Evenko point in Figure 1 corresponds to different
optimized potential parameters.) A number of optimized
potentials provide excellent absorptions for a selected momen-
tum, and their survivals are indistinguishable with taeaxis
in the scale of this figure. It has been already pointed out that
Veum potentials can always be adapted to guarantee full
absorption at any momentum. Actually the results Vg,
Vac,, Vemv, Vss N = 2), andVsg (N = 1) (not shown) are
all good enough for all practical purposes in the monochromatic
limit of absorption. Itis remarkable that a single complex square
barrier allows us, for type | conditions, to achieve survivals
below 107 in the studied range.

Other potentials do not behave as efficiently as the former
group in the lowkp region. In particular, the monomials with
n real (types | or P) are useless for very ldg The linear
potential improves somewhat the performance of the quadratic
potential, but not enough to make it a practical option.

The absorption of the monomials improves substantially for
| conditions by considering a complex prefactor as discussed
in ref 10 and more recently in ref 16. However, this significant
improvement is not achieved for type P potentials. (The curve
for Vi c p has not been included since it is similar to the one for
Virp except forkg < 3, where it is only slightly better.)

3.2. Absorption Width. Besides the optimized absorption
at one particulaky, the effective absorption width arouikglis
a very important parameter to determine the applicability of a
potential. The effective absorption width(ky; €) is defined
as the interval arounkh whereSk) < €. Figure 4 shows this
width for ¢ = 0.001. ForVgr and Voc we use the same
potentials that have been optimized in Figure 1. Ag&es
(squares) is useless at low momentum, but its effective width
grows very rapidly from a certain threshold. In accordance with
Figure 1,Vqc (circles) has a nonzero effective absorption width
at low momenta only for type | potentials, but this width is

absorption width, and (3) robustness versus discretization. Forrather small in any CaSE\/(an)/.M optimized potentials (triangles

the nonspecialist who wants to skip the detailed analysis of the up) provide in comparison with the quadratic potentials larger
numerical results, a brief summary with the essential conclusions absorption widths at low momenta, although their behavior at
is provided in the next section. To facilitate the interpretation higherko is deceptive. There is anyway some improvement by
of the figures, the same symbols are used throughout for the ysing type | conditions (with an infinite wall at= 1) instead
same potentials. Thus, dashed lines (with open symbols) cor-of type P conditions. By far the best performance is achieved
respond to type P potentials, and solid lines (with solid symbols) with composite potential&/ss formed by addition of square
correspond to type | potentials. The correspondence betweenyarriers. We have taken five barriehs= 5, in the calculations
symbols and potentials is as follows: Triangles Mgzﬁ),lM; of Figure 4 (diamonds), but the results may still improve by
triangles down,\/(;,\),,M; squaresVor (quadratic with realy); increasingN. Figure 4 is complemented by Figure 5, where
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Figure 5. Survival curvesSKk) for the same potentials of Figure 4 01
optimized atky = 5. T 2 7 8

3 4 5 6
) . o Number of barriers.
the survival curvesS(k) for the potentials optimized &b = 5 Figure 7. Absolute error of the survivaE,, versus the number of

are represented, and the important improvement of the com-discretization barriers fok, = 1. The lines are drawn as a visual aid

posite potentiald/sg with respect to all other functional forms  (since only integer values make sense.) Triangles douff),,; the
is made evident. The coefficients for each of the potentials of rest of the symbols are as in Figure 4.
Figure 5 are given in Table 1. Moreover, Figure 3 represents

the real and imaginary parts of the potentiah (N = 5) used TABLE 1: Parameters for the Potentials of Figure 5

in Figure 5. Vor|i nor = (0.61419x 1, 0)
3.3. Robustness.Other valuable quality of a good absorber Vorp 1or = (0.11182x 1% 0)
is the “robustness” versus discretization. To quantify the  Vec! /qc = (0.74360x 1CF, —0.52910x 109
“ » . . . . VQC,P Noc = (015113X 103, —0.75050x 102)
robustness” of a given potential in a manner as independent 2) a= (1, 0)
as possible of any particular wave packet or calculational BMM! a1 = (0, 5)
method, the following quantity will be used: @=—ay—a—as— &
az = (0.29166x 1(%, —0.10395x 1P
E, (k) = Sko) — Sy(ko) (26) a; = (—0.12891x 1(%, 0.10522x 107)
Vs 2= (1,0)
whereS(ko) is the survival for the selected potential aBgko) a;= (0, 5)
is the survival for a discretized approximation of the original 8= —3a0 — 281 + as + 28 1 33+ da
- i ; 3= 2ap + a1 — 28y — 3as — 43 — Say
potential constructed byl square barriers of equal width N6 a, = (0.23264x 10, 0.24091x 10°)
= 1. The barriers of the “discrete approximation” are chosen as = (—0.40929x 10, —0.37388x 10)
as as = (0.32269x 104 0.27900x 10%
a; = (—0.94918x 10°%, —0.80405x 10
Vi=V(x) j=1,..N (27) Vsg, (N = 5) Vi = (—0.26953x 10%, 0.73126x 1(F)

V, = (—0.49506x 10*, —0.66007x 10?)
Vs = (—0.89834x 10¢, —0.24970x 10)

= (j — 1
wherex = (j — /0. . . Va = (—0.65683x 10¢, 0.43720x 10°)
Figure 6 represents the imaginary part of an arbitrary potential Vs = (—0.15653x 10 0.67373x 107)

and its discretized version whexi = 5. Using the transfer Veg N = 5) V; = (—0.32005x 105, 0.19649x 10%)
matrix technique the transmission and reflection coefficients for (—0.10844x 10°, —0.18877x 10%)
these square barrier potentials are obtained e¥sifigure 7 (—0.32519x 10%, —0.33460x 10°)
shows the absolute errdi, versusN for ko = 1. The three (~0.37319x 10%, —0.29552x 10)

. . A 0) (—0.48302x 10%, —0.28221x 10
potentials examined in this figur&or, Voc, and ngM, are
well represented with discretizations of seven or more barriers. j the scale of the figure.) With this robustness criterion the
than the potentiaMor, although in this energy region this  \hen a multiple 0Ny is used in the discretizatiohl = nNo, n
particular potential is not very effective; see again Figure 1. =1 2 3, .. but for other value&, can be significant. This
Vi, is quite robust, and its approximations with one or two means in practice that when discretizing ¥ potentials on
barriers provide the smallest error among the potentials com-a grid, one should always put an integer number of points
pared in Figure 7. On the contrak;gh),,M potentials oscillate (typically 1, 2, or 3) for each square barrier to obtain good
too much and are not robust (théig is too large to be drawn  agreement with the theoretical absorption.

V2 =
V3 =
V4 =
Vs
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ness). The form for | conditions was known and in this work

19 A A = we have given the explicit form for P conditions. The
7 monomials could be also used but they have a number of
15 drawbacks. First of all the parameters have to be optimized.
13 Second, in the lovk, region they only absorb for | conditions
S and for a complex prefactoy.
‘Z"o 9 v (b) Broad momentum intervalkilks], with k; > 10: In this
; v v case any monomial may be used efficiently. For simplicity,
v v the linear potential/, r may be recommended since the prefactor
51 0o o n(ko) can be easily estimatéd? If a minimum, nonzero
31 © oo on A dimensional momenturp; can be established for a particular
118 Ao application, the corresponditkgcan always be increased beyond
J; k ~ 10 by increasing., sincek = plUh. However, this may
i A A A lead to very large potential widths and consequently to a very
15 AA A A heavy numerical burden. Accurate calculations at thresholds,
13 N . A or for low-energy scattering, would require extremely large (and
40 A A impractical) values ofL. An additional possible source of
Zo 9 A N v difficulties is that the robustness of the optimized monomials
; 0. A v v . decreases wheky increases.
° v » (c) Broad momentum interval including the regikn< 10:
5 °. v v - nd At thresholds, for low-energy scattering, or to avoid too large
3 v M v“ B values of the absorption length this is the important case.
1 z > 3 ” " s The best choice available is the composite potentials formed
K with square barriers\sg. These are very robust potentials

Figure 8. Number of barriers required so tHat < 0.001 for potentials
optimized atky versusk, for type P conditions (A) or type | conditions

(B). Triangles down,\/g],\),lM; the rest of the symbols are as in Figure 4.

provided each barrier is sampled with an integer number of
discretization points. The optimization of the barrier energies
can be constrained so that only negative imaginary parts are
allowed® and any stability problem is avoided. In the cases

To examine the robustness as a function of the incident Where the algorithms are stable for potentials with positive

momentum we have defined (ko) as the number of barriers
required so thaE, < 0.001 for a potential optimized &t. As

a general ruléN; increases withky except possibly in the low
momentum region. As indicated beforéZ),, is not at all
robust: see Figure 8.

4. Conclusions

Complex potentials are an important tool in different calcula-
tion methods in quantum reactive collisions, so their improve-

imaginary parts, the constraint may be removed to obtain better
absorption profiles.

Finally, our study provides sufficient examples that should
also clarify a number of misconceptions about complex poten-
tials that have at times hindered a more extensive search of
functional forms: In particular, the absorbing potentials do not
have to be purely imaginary (the addition of a real part adds
flexibility and improves the absorptiod$;'6the potential width
may be smaller than the incident momentum wavelength; and
potentials with discontinuities do not necessarily cause reflection

ment and rational use may have an immediate impact in the and can be numerically robust.
accuracy of the results and the range of systems that can be
studied. We have examined the performance of several forms
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of absorbing potentials, in particular their numerical robustness

versus discretization and their effective absorption width when

periodic or infinite barrier boundary conditions are imposed.
(Both conditions are found in actual applications.) No single
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of the most adequate potential for each application. Besides
absorption width and robustness, the stability of certain numer-

ical methods requires that the potential satisfy additional

properties. In particular, some of the time-dependent propaga-

tion algorithms are unstable when the imaginary part of the

complex potential takes a large positive value. (We have noted

this unstable behavior with the Caley transform or split
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