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Virtues and weaknesses of several complex absorbing potentials are examined. In particular, we study the
absorption width and robustness of different optimized absorbing potentials for two types of boundary
conditions. It is found that “composite potentials” formed by addition of square barrier units provide a flexible,
robust, and efficient approach to absorb in the low momentum region, where other potentials are useless.

1. Introduction

Absorbing complex potentials are an important tool in
different numerical methods used to study quantum reactive
collisions (stationary and time-dependent) and cumulative
reaction probabilities;1-5 see additional references in a recent
review.6 Several works have been devoted to analysis of general
properties of complex potentials as well as the behavior of
specific functional forms.1,7-12 This paper complements these
works by comparing, for two different types of boundary
conditions, the robustness and the effective absorption range
of some of these functional forms: monomial potentials, the
family of potentials proposed by Brouard, Macı´as, and Muga
in refs 9 and 10 and their generalizations, and composite
potentials formed by addition of square barriers. The numerical
examples provided should also clarify some common miscon-
ceptions about complex absorbing potentials.

Throughout the paper we shall limit the discussion to one
dimension (it may be, for example, one of the scaled Jacobi
coordinates in a collinear atom-diatom collision). To analyze
and compare the performance of absorbing potentialsν of finite
support [0,L], it is helpful to use dimensionless quantities.
Dividing the stationary Schro¨dinger equation for a state of
energyE ) p2/(2m),

by λL-1/2, whereλ ) p2/2mL2, and using the dimensionless
potential and total energiesV ) ν/λ andE ) E/λ, respectively,
all potentials have support [0, 1] in the dimensionless coordinate
x ) y/L. The dimensionless Schro¨dinger equation takes the form

whereψ(x) ) L1/2Ψ(y), andk ) E1/2 ) pL/p is a dimensionless
wavenumber (we shall also frequently refer tok as a “momen-
tum”). The performance of a complex potential as an absorber
for incidence from the left is defined by itsnonabsorptionor
surViVal probability, the sum of transmission and reflection
probabilities,S(k) ≡ |Tl(k)|2 + |Rl(k)|2. (Tl and Rl are the

complex transmission and reflection amplitudes for left inci-
dence.) The absorption for a wave packet can be obtained by
averaging 1- S(k) with the initial momentum distribution.
However, these theoretical absorption values may be difficult
to achieve in an actual calculation because, due to the space
discretization imposed by grid methods, the potential is only
sampled at a limited set of points. If the potential oscillates
wildly, a large number of grid points may be necessary to
reproduce in the numerical calculation its ideal absorption curve.
A potential is defined to be “robust” if it maintains its theoretical
absorption when discretized. In general, therobustnesswill
vary with incident momentum. A robustness parameter will
be defined later to quantify this concept.

The ideal “all-purpose” absorbing potential for an arbitrary
application would absorb fully all incident momenta

and be as robust as possible. These ideal properties are not
satisfied entirely by any known potential, and it is important to
keep searching for better functional forms in order to study
accurately, with a minimum of grid points, reactive problems
where broad momentum intervals are represented. The lowk
region is very important in practice because the potential should
occupy a small (dimensional) interval [0,L] to minimize the
computational effort. But the dimensionless variablek depends
linearly onL and on the dimensional momentump, so that this
objective can only be fulfilled with good absorbers at low values
of k.

In section 2 the different potentials are described, and their
performance is compared in section 3. The paper ends with
the main conclusions drawn from the numerical results.

2. Potentials

Since the complex potentials are used in many different
applications that use several numerical techniques, it is useful
to distinguish and study two types of potentials. (a) Type I
potentials include an infinite barrier:

Because of the infinite wall there is no transmission in this case.
Type I potentials are naturally adapted to Dirichlet homogeneous
boundary conditions (vanishing wave function at the edges of
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H(y)Ψ(y) ) - p2

2m
d2

dy2
Ψ(y) + ν(y)Ψ(y) ) EΨ(y) (1)

- d2

dx2
ψ(x) + V(x)ψ(x) ) k2ψ(x) (2)

S(k) ) 0 (all k > 0) (3)

VI(x) ) {0 if x < 0
WI(x) if 0 e x e 1
∞ if 1 < x

(4)
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the “box”). (b) Type P potentials do not have an infinite wall,
so they are instead suitable for periodic boundary conditions:

Note that the same functionW(x) may lead to different values
of the survivalS(k) for types I and P.

The traditional approach is to use a purely imaginary
functional form with parameters that can be varied to obtain
maximum absorption at or around a selected valuek0. Many
of the potential forms proposed have the factorized form

so that for a fixedF(x) function, η(k0) is chosen to minimize
S(k0). In order to optimize the potentials at everyk0, the
Schrödinger equation is solved numerically to determine the
complex transmission and reflection amplitudes,Tl(k0) and
Rl(k0). In this work a quasi-Newtonian method has been used
to find the best value ofη(k0).

2.1. Powers ofx. The most common particular case of eq
6 is the monomial form:

In particular we shall limit our study ton ) 1 andn ) 2 and
consider purely real or complex prefactors (ηLR or ηLC for the
linear case, andηQR or ηQC for the quadratic case),

When necessary, an additional subscript I or P will specify the
potential type (otherwise it may be understood that the two types
are being considered). Even thoughVQR andVLR are particular
cases ofVQC and VLC, we have optimized the two forms
separately in the numerical comparisons, since in most of the
applications, onlyη real has been used.

Riss and Meyer have extensively studied the properties of
type P potentials with the general form eq 7 but for real
prefactorsη. They found that higher powers (n > 2) improve
the performance of linear or quadratic potentials only for large
k0, but the differences are not significant. (The error made by
discretizing the potentials is generally larger than the change
in absorption due to increasingn.) We have found the same
behavior for complexη, and also for type I potentials (with
real or complexη), so that the linear and/or quadratic potentials
may be taken as representative cases. Their low-energy
behavior will be discussed in section 3.1.

2.2. Generalizations of the Construction Method of
Brouard, Macı́as, and Muga. A different strategy was
proposed in refs 9 and 10, based on a simple inversion method
that assumes first a functional formof the waVe functionin the
potential region. In this manner a family of potentialsVBMM

(ν)

can be generated to systematically increase the absorption
widths. The basic ideas are first outlined, and then several
generalizations are provided.

The simplest functional form of the wave function is a
polynomial:

where the complex coefficientsaj are obtained by imposingJ
+ 1 conditions at the boundariesx ) 0 andx ) 1. In particular,
by choosingR(k0) ) 0 (no reflection fork0), and putting an
infinite wall atx ) 1 to completely avoid transmission, the three
conditions (J ) 2) read

Substituting eq 12 into eq 13 leads to a system of equations
that can be solved for the coefficientsaj. The potential is then
obtained by solving forW(x) in the Schro¨dinger equation:

The main virtue of this method is that it provides an explicit
potential that guarantees full absorption for any selected
momentum (also for an arbitrary lengthL when dimensional
quantities are used), and this may be sufficient for some
applications. This zeroth-order potential also makes clear that
the complex potentials can improve their absorption by adding
a real part, that discontinuities do not preclude full absorption,
and that (when dimensional units are used) the absorption can
be achieved in an arbitrarily short intervalL (contrast this to
the semiclassical, but generally invalid, notion that several
wavelengths are required).

Higher order members of this family of potentials can be
constructed by imposing that successive derivatives ofRl(k)
become zero atk ) k0. For type I potentials, ifν derivatives
are made zero, thenJ ) 2 + ν. Except for ν ) 0, the
coefficientsaj have to be obtained numerically and, in practice,
going beyondν ) 2 is cumbersome.

The same method can be adapted to type P potentials. Now
Rl(k0) ) Tl(k0) ) 0, and the continuity of the wave function
derivative atx ) 1 imposes the additional condition

In this manner the explicit form of a zeroth-order type P potential
absorbing completely atk0 is

To extend the effective absorption width, successive derivatives
of Tl and Rl at k ) k0 are made zero, so for each additional
order two more coefficients are needed (for type P potentialsJ
) 3 + 2ν).

The method can be also generalized to absorb at an arbitrary
number ofk points by using the interferences between contigu-

ψ(x) ) ∑
j)0

J

aj(k0)x
j (12)

ψ(x ) 0) ) 1

d
dx

ψ(x ) 0) ) ik0

ψ(x ) 1) ) 0 (13)

WBMM,I
(0) (x) ) k0

2 +
ψ′′(x)

ψ(x)
)

k0
2 + 2(x - 1)-1 (x + 1

1 + ik0
)-1

(14)

d
dx

ψ(x ) 1) ) 0 (15)

WBMM,P
(0) (x) )

k0
2 + 6 [x -

3 + 2ik0

3(2 + ik0)] (x + 1
2 + ik0

)-1

(x - 1)-2 (16)

VP(x) ) {0 if x < 0
WP(x) if 0 e x e 1
0 if 1 < x

(5)

W(x; k0) ) -iη(k0)F(x) (6)

W(x; k0) ) -iη(k0)x
n (7)

WLR(x; k0) ) -iηLR(k0)x (8)

WLC(x; k0) ) -iηLC(k0)x (9)

WQR(x; k0) ) -iηQR(k0)x
2 (10)

WQC(x; k0) ) -iηQC(k0)x
2 (11)
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ous potential units.13 Assume first that two complex potential
unitsV1 andV2 have contiguous and finite supports, as depicted
in Figure 2. LetTr,l andRr,l be the complex transmission and
reflection amplitudes for right (r) and left (l) incidence of the
compound potentialV ) V1 + V2, andTi

r,l andRi
r,l, i ) 1, 2,

the partial amplitudes of the potential units. From the depen-
dence ofTr,l andRr,l on the partial amplitudes it is possible to
establish the following conditions so that the compound potential
absorbs two different momentak1 andk2 (herek ) d1p/p where
d1 is the dimensional width of the first barrier):13

Note thatV1 absorbsk1, and so doesV, but V2 does not absorb
at k2. Instead, an interference effect is responsible for the
absorption ofk2 by V. To fulfill these equationsV1 can be
constructed with eq 16, whileV2 may be obtained by imposing
eqs 18 and 19 on an assumed form of the wave function. This

leads to four conditions that can be satisfied, for example, by a
cubic polynomial. The addition of new units (V3, V4, ...) can
be continued in the same fashion to absorbin principle an
arbitrary number of values ofk (for each new unit conditions
similar to eqs 18 and 19 are imposed). Unfortunately, we have
not been able to exploit this method efficiently in practice,
because small numerical errors in the calculation of the partial
reflection and transmission amplitudes for the unitVj tend to
blow up when the reflection amplitude forVj+1 is calculated
by means of eq 19, ifTj(kj+1) is very small. Thus, unless a
way is found to circumvent this problem (possibly by using
other functional forms for the wave function and potential units),
their applicability as a computational tool is limited. However,
in the next subsection a numerically robust alternative also
making use of the interferences of composite barriers, but in a
less explicit and more effective way, is provided.

2.3. Composite Potentials Formed by Adding Square
Barrier Units. In general, the absorption in a given interval
[k1, k2] will improve by increasing the number of optimization
parameters of the functional form of the complex potential.
However, for arbitrary functional forms the numerical optimiza-
tion can be a lengthy process that requires solving the Schro¨-
dinger equation many times, so that the number of free
parameters is usually limited to one or two. A more flexible
way out is provided by using a composite potentialVSB formed
by adding a series of contiguousN complex square barriers of
lengthε ) 1/N and complex energies{Vj}, j ) 1, 2, ...,N. An
example is provided in Figure 3. The solution of the Schro¨d-
inger equation in this case involves simply the multiplication
of 2 × 2 transfer matrices,14 a very fast procedure that allows
optimization of many more parameters (two for each barrier)
than for any other functional form. To implement the method
let us first define the auxiliary matrixM(k, x) by14

Figure 1. Survival for optimized potentials,S(k0), versusk0. Dashed
lines (and open symbols) correspond to type P potentials, whereas solid
lines (and solid symbols) correspond to type I potentials in all figures.
Squares,VQR; circles,VQC; triangles right,VLR. For all other potentials
discussed in the text,S(k0) is indistinguishable with the real axis in the
scale of the figure.

Figure 2. Two arbitrary contiguous potential unitsV1 andV2 and the
composite barrierV1 + V2, with the corresponding reflection and
transmission amplitudes for left incidence.

T1
l(k1) ) R1

l(k1) ) 0 (17)

T2
l(k2) ) 0 (18)

R2
l(k2) )

R1
l(k2)

R1
l(k2)R1

r(k2) - T1
l(k2)T1

r(k2)
(19)

Figure 3. Real and imaginary parts of a particular composite barrier
potentialVSB,I, N ) 5. The parameters are given in Table 1.

M1,1 ) eikx M1,2 ) e-ikx

M2,1 ) keikx M2,2 ) -ke-ikx
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and the matrixK(kj, ε) for the jth barrier as

where kj ) (Vj - E)1/2. The transfer matrixW relates the
coefficientsAl,r andBl,r that multiply eikx and e-ikx on both sides
of the barrier (“left” and “right”):

W takes the form

and the reflection and transmission amplitudes for left incidence
are given by

so the survivalS(k) or its gradient with respect to variations of
the parametersVj are easily evaluated. The optimization of the
potential barriers may be carried out by minimizing with respect
to theVj the sum of the survival probabilities ats values ofk
evenly spaced in the absorption interval [ki, kf]:

By increasing the number of barriersN, the flexibility of the
potential function increases, and the value of the minimizedf
decreases. In applicationsN is chosen according to the density
of grid points of the spatial discretization (so that an integer
number of grid points corresponds to each barrier, this aspect
will be discussed further in the next section). By increasings
the survival curves tend to become flat and close to zero in the
full absorption interval [ki, kf]. An application of this approach
to the collinear reactionH + H2

15 shows how the spatial region
devoted to absorption is significantly reduced with respect to
other potentials, allowing numerical access to low-energy
scattering.

3. Comparison

Here a numerical comparison of the performance of the
potentials described in the previous section is provided. The
three aspects studied are (1) optimized survival at fixedk0, (2)
absorption width, and (3) robustness versus discretization. For
the nonspecialist who wants to skip the detailed analysis of the
numerical results, a brief summary with the essential conclusions
is provided in the next section. To facilitate the interpretation
of the figures, the same symbols are used throughout for the
same potentials. Thus, dashed lines (with open symbols) cor-
respond to type P potentials, and solid lines (with solid symbols)
correspond to type I potentials. The correspondence between
symbols and potentials is as follows: Triangles up,VBMM

(2) ;
triangles down,VBMM

(0) ; squares,VQR (quadratic with realη);

circles,VQC (quadratic with complexη); diamonds,VSB (com-
posite square barriers); triangles right,VLR (linear with realη).

3.1. Minimized Survival. We shall first compare the
survival S(k0) for potentials optimized at everyk0 value; see
Figure 1. (Everyk0 point in Figure 1 corresponds to different
optimized potential parameters.) A number of optimized
potentials provide excellent absorptions for a selected momen-
tum, and their survivals are indistinguishable with thek0 axis
in the scale of this figure. It has been already pointed out that
VBMM potentials can always be adapted to guarantee full
absorption at any momentum. Actually the results forVLC,I,
VQC,I, VBMM, VSB,P(N ) 2), andVSB,I(N ) 1) (not shown) are
all good enough for all practical purposes in the monochromatic
limit of absorption. It is remarkable that a single complex square
barrier allows us, for type I conditions, to achieve survivals
below 10-7 in the studied range.

Other potentials do not behave as efficiently as the former
group in the lowk0 region. In particular, the monomials with
η real (types I or P) are useless for very lowk0. The linear
potential improves somewhat the performance of the quadratic
potential, but not enough to make it a practical option.

The absorption of the monomials improves substantially for
I conditions by considering a complex prefactor as discussed
in ref 10 and more recently in ref 16. However, this significant
improvement is not achieved for type P potentials. (The curve
for VLC,P has not been included since it is similar to the one for
VLR,P, except fork0 e 3, where it is only slightly better.)

3.2. Absorption Width. Besides the optimized absorption
at one particulark0, the effective absorption width aroundk0 is
a very important parameter to determine the applicability of a
potential. The effective absorption width∆(k0; ε) is defined
as the interval aroundk0 whereS(k) e ε. Figure 4 shows this
width for ε ) 0.001. ForVQR and VQC we use the same
potentials that have been optimized in Figure 1. Again,VQR

(squares) is useless at low momentum, but its effective width
grows very rapidly from a certain threshold. In accordance with
Figure 1,VQC (circles) has a nonzero effective absorption width
at low momenta only for type I potentials, but this width is
rather small in any case.VBMM

(2) optimized potentials (triangles
up) provide in comparison with the quadratic potentials larger
absorption widths at low momenta, although their behavior at
higherk0 is deceptive. There is anyway some improvement by
using type I conditions (with an infinite wall atx ) 1) instead
of type P conditions. By far the best performance is achieved
with composite potentialsVSB formed by addition of square
barriers. We have taken five barriers,N ) 5, in the calculations
of Figure 4 (diamonds), but the results may still improve by
increasingN. Figure 4 is complemented by Figure 5, where

K1,1 ) ekjε + e-kjε

2
K1,2 ) -ekjε + e-kjε

2kj
(20)

K2,1 )
kj(-ekjε + e-kjε)

2
K2,2 ) ekjε + e-kjε

2
(21)

(Al

Bl
) ) W (Ar

Br
) (22)

W ) M-1(k, x ) 0) [∏
j)1

N

K(kj, ε)] M(k, x ) 1) (23)

Rl(k) )
W2,1

W1,1
Tl(k) ) 1

W1,1
(24)

f(V1, ...,VN; k1, ...,ks) ) ∑
R)1

s

S(V1, ...,VN; kR) (25)

Figure 4. Absorption width∆(k0; 0.001) versusk0. Diamonds,VSB (5
square barriers); triangles up,VBMM

(2) ; squares,VQR; circles,VQC.
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the survival curvesS(k) for the potentials optimized atk0 ) 5
are represented, and the important improvement of the com-
posite potentialsVSB with respect to all other functional forms
is made evident. The coefficients for each of the potentials of
Figure 5 are given in Table 1. Moreover, Figure 3 represents
the real and imaginary parts of the potentialVSB,I(N ) 5) used
in Figure 5.

3.3. Robustness.Other valuable quality of a good absorber
is the “robustness” versus discretization. To quantify the
“robustness” of a given potential in a manner as independent
as possible of any particular wave packet or calculational
method, the following quantity will be used:

whereS(k0) is the survival for the selected potential andSN(k0)
is the survival for a discretized approximation of the original
potential constructed byN square barriers of equal widthδ, Nδ
) 1. The barriers of the “discrete approximation” are chosen
as

wherexj ) (j - 1/2)δ.
Figure 6 represents the imaginary part of an arbitrary potential

and its discretized version whenN ) 5. Using the transfer
matrix technique the transmission and reflection coefficients for
these square barrier potentials are obtained easily.14 Figure 7
shows the absolute errorEa versusN for k0 ) 1. The three
potentials examined in this figure,VQR, VQC, and VBMM

(0) , are
well represented with discretizations of seven or more barriers.
A curious result is that the barrier approximation behaves better
than the potentialVQR, although in this energy region this
particular potential is not very effective; see again Figure 1.
VBMM,I

(0) is quite robust, and its approximations with one or two
barriers provide the smallest error among the potentials com-
pared in Figure 7. On the contraryVBMM

(2) potentials oscillate
too much and are not robust (theirEa is too large to be drawn

in the scale of the figure.) With this robustness criterion the
potentialsVSB formed byN0 square barriers are perfectly robust
when a multiple ofN0 is used in the discretization,N ) nN0, n
) 1, 2, 3, ..., but for other valuesEa can be significant. This
means in practice that when discretizing theVSB potentials on
a grid, one should always put an integer number of points
(typically 1, 2, or 3) for each square barrier to obtain good
agreement with the theoretical absorption.

Figure 5. Survival curvesS(k) for the same potentials of Figure 4
optimized atk0 ) 5.

Ea(k0) ) S(k0) - SN(k0) (26)

Vj ) V(xj) j ) 1, ...,N (27)

Figure 6. Imaginary part of an arbitrary potential and its discretized
approximation withN ) 5.

Figure 7. Absolute error of the survival,Ea, versus the number of
discretization barriers fork0 ) 1. The lines are drawn as a visual aid
(since only integer values make sense.) Triangles down,VBMM

(0) ; the
rest of the symbols are as in Figure 4.

TABLE 1: Parameters for the Potentials of Figure 5

VQR,I ηQR ) (0.61419× 102, 0)
VQR,P ηQR ) (0.11182× 103, 0)
VQC,I ηQC ) (0.74360× 102, -0.52910× 102)
VQC,P ηQC ) (0.15113× 103, -0.75050× 102)
VBMM,I

(2) a0 ) (1, 0)
a1 ) (0, 5)
a2 ) -a0 - a1 - a3 - a4

a3 ) (0.29166× 102, -0.10395× 102)
a4 ) (-0.12891× 102, 0.10522× 102)

VBMM,P
(2) a0 ) (1, 0)

a1 ) (0, 5)
a2 ) -3a0 - 2a1 + a4 + 2a5 + 3a6 + 4a7

a3 ) 2a0 + a1 - 2a4 - 3a5 - 4a6 - 5a7

a4 ) (0.23264× 104, 0.24091× 104)
a5 ) (-0.40929× 104, -0.37388× 104)
a6 ) (0.32269× 104, 0.27900× 104)
a7 ) (-0.94918× 103, -0.80405× 103)

VSB,I(N ) 5) V1 ) (-0.26953× 104, 0.73126× 103)
V2 ) (-0.49506× 104, -0.66007× 102)
V3 ) (-0.89834× 104, -0.24970× 104)
V4 ) (-0.65683× 104, 0.43720× 103)
V5 ) (-0.15653× 104, 0.67373× 103)

VSB,P(N ) 5) V1 ) (-0.32005× 105, 0.19649× 104)
V2 ) (-0.10844× 106, -0.18877× 104)
V3 ) (-0.32519× 104, -0.33460× 103)
V4 ) (-0.37319× 104, -0.29552× 104)
V5 ) (-0.48302× 103, -0.28221× 104)
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To examine the robustness as a function of the incident
momentum we have definedNc(k0) as the number of barriers
required so thatEa e 0.001 for a potential optimized atk0. As
a general ruleNc increases withk0 except possibly in the low
momentum region. As indicated before,VBMM

(2) is not at all
robust: see Figure 8.

4. Conclusions

Complex potentials are an important tool in different calcula-
tion methods in quantum reactive collisions, so their improve-
ment and rational use may have an immediate impact in the
accuracy of the results and the range of systems that can be
studied. We have examined the performance of several forms
of absorbing potentials, in particular their numerical robustness
versus discretization and their effective absorption width when
periodic or infinite barrier boundary conditions are imposed.
(Both conditions are found in actual applications.) No single
potential is useful for all purposes, but our study allows selection
of the most adequate potential for each application. Besides
absorption width and robustness, the stability of certain numer-
ical methods requires that the potential satisfy additional
properties. In particular, some of the time-dependent propaga-
tion algorithms are unstable when the imaginary part of the
complex potential takes a large positive value. (We have noted
this unstable behavior with the Caley transform or split
propagation methods.) For these unstable methods the best
choice will be among one of the following potentials: monomi-
als,VBMM

(0) , or VSB with the restrictionIm (Vj) < 0. Depending
on the absorption interval, we may distinguish the following
cases:

(a) Monochromatic absorption: In this case the best choice
is VBMM

(0) . This is an explicit (no optimization is required) and
robust potential (in spite of the singularities), with a purely
negative imaginary part, that will absorb at any chosenk0, so
that in dimensional units the potential lengthL may be arbitrary
(in practice subject only to the restrictions imposed by robust-

ness). The form for I conditions was known and in this work
we have given the explicit form for P conditions. The
monomials could be also used but they have a number of
drawbacks. First of all the parameters have to be optimized.
Second, in the lowk0 region they only absorb for I conditions
and for a complex prefactorη.

(b) Broad momentum interval, [ki,kf], with ki > 10: In this
case any monomial may be used efficiently. For simplicity,
the linear potentialVLR may be recommended since the prefactor
η(k0) can be easily estimated.7,12 If a minimum, nonzero
dimensional momentumpi can be established for a particular
application, the correspondingki can always be increased beyond
k ≈ 10 by increasingL, sincek ) pL/p. However, this may
lead to very large potential widths and consequently to a very
heavy numerical burden. Accurate calculations at thresholds,
or for low-energy scattering, would require extremely large (and
impractical) values ofL. An additional possible source of
difficulties is that the robustness of the optimized monomials
decreases whenk0 increases.

(c) Broad momentum interval including the regionk < 10:
At thresholds, for low-energy scattering, or to avoid too large
values of the absorption lengthL, this is the important case.
The best choice available is the composite potentials formed
with square barriers,VSB. These are very robust potentials
provided each barrier is sampled with an integer number of
discretization points. The optimization of the barrier energies
can be constrained so that only negative imaginary parts are
allowed15 and any stability problem is avoided. In the cases
where the algorithms are stable for potentials with positive
imaginary parts, the constraint may be removed to obtain better
absorption profiles.

Finally, our study provides sufficient examples that should
also clarify a number of misconceptions about complex poten-
tials that have at times hindered a more extensive search of
functional forms: In particular, the absorbing potentials do not
have to be purely imaginary (the addition of a real part adds
flexibility and improves the absorption);10,16the potential width
may be smaller than the incident momentum wavelength; and
potentials with discontinuities do not necessarily cause reflection
and can be numerically robust.
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Figure 8. Number of barriers required so thatEa e 0.001 for potentials
optimized atk0 versusk0 for type P conditions (A) or type I conditions
(B). Triangles down,VBMM

(0) ; the rest of the symbols are as in Figure 4.
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